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AMSRD-ARL-RO-OI Proposal Number: 45508-EG

J. N. Reddy
Department of Mechanical Engineering
Texas A&M University

EXECUTIVE SUMMARY

Most structural components encountered in army vehicles and armor can be classified as beams,
plates, or shells for analysis purposes. While these structural elements are designed to function
properly under thermo-mechanical loads encountered in their use, they do develop high stresses
and experience high vibration frequencies that may make them non-functional in actual service
conditions. The objective of this research is to develop consistent plate and shell theories and
associated computational framework for linear and non-linear problems of structural dynamics in
which localized high gradients of the solutions are resolved accurately and time accuracy of the
solution is assured at all stages during the evolution. Crucial importance of this framework will
be demonstrated computationally through well known benchmark model problems in the area of
solid mechanics with special focus on composite structures. The developed methodology and the
resulting infrastructure with its applications to solid and structural mechanics problems should
provide highly reliable, robust and accurate computational technology to the United States Army
Laboratories. The specific objectives of this research were:

» Develop accurate and consistent structural theories and associated finite element models
of plates and shells that account for transverse shear deformation and illustrate the
accuracy using benchmark plate and shell problems.

* Develop mixed and least-squares finite element models of the refined theories for the
analysis of plates and shells.

In the following pages a technical discussion of the scientific progress made and
accomplishments are summarized in two parts:

1. A robust shell finite element for nonlinear analysis of composite and functionally graded
shells, and
2. Mixed least-squares finite element models for bending and vibration of plates.



1. LARGE DEFORMATION ANALYSIS OF SHELLS

1.1 Introduction

Composite shells have been of great interest in many engineering applications. Composites
made up of fiber-reinforced laminae that are bonded together (Reddy, 2004) are particularly
attractive. A typical lamina is often characterized as orthotropic with the principal material
directions of each lamina coinciding with the fiber direction and transverse to it. As required in a
design, by changing the material type, fiber orientation, or thickness, the designer can tailor the
different properties of a laminate to suit a particular application. Despite their multiples
advantages, laminated composites exhibit a serious shortcoming due to concentrations of
stresses, as well as in-surface displacements, caused by the piece-wise variation of the material
properties through the thickness of the shell. Consequently, a special material named
“functionally graded materials” (FGMs) was proposed by Koizumi (1997) and Yamanouchi et al.
(1990), in which the material properties vary smoothly and continuously from one surface to the
other. These materials are inhomogeneous and made from isotropic components. The gradation
of the material properties through the thickness avoids jumps or abrupt changes on the stress and
displacement distributions of any thin-walled structure.

In some applications shell structures can experience large elastic deformations and finite
rotations. Geometric nonlinearity plays an essential role in the behavior of the shell, especially
when it reaches large deformations. Previous studies show that laminated shells exhibit drastic
changes in their bending response (Basar et al.,1993; Vu-Quoc and Tan, 2003; Balah and Al-
Ghamedy, 2002). Even for homogeneous and isotropic shells we observe an unpredictable
behavior (Simo et al., 1990; Sansour and Kollmann, 2000). Therefore, it is of vital importance to
study the nonlinear response of potentially inhomogeneous materials such as functionally graded
shells.

This paper is motivated by the lack of studies found in the literature that addresses large
deformation analysis for FGM shells. A review of technical articles shows that few studies have
been carried out to investigate the nonlinear bending response of plates and shells. Most of them
use von Karman or Sanders theories which are restricted to moderately small deformations. We
cite the papers of Na and Kim (2005), who examined the effect of thermal loading and uniform
pressure on the bending response of FGM plates; and Yang and Shen (2003a,b), who analyzed
the nonlinear bending and postbuckling behavior for FGM plates under thermomechanical load
with various boundary conditions. Woo and Meghid (2001) provided an analytical solution for
large deflection FGM plates and shells under mechanical and thermal loading; while Ma and
Wang (2003) examined the axisymmetric large deflection bending and thermal postbuckling of
FGM circular plates subjected to mechanical and thermal loading. Both articles are based on the
classical von Karman plate theory.

Moreover, Reddy and Chin (1998) analyzed the dynamic thermoelastic response of
functionally graded cylinders and plates. Praveen and Reddy (1998) carried out a nonlinear
thermoelastic analysis of functionally graded ceramic-metal plates using a finite element model
based on the FSDT. Thermomechanical buckling, as well as bending and free vibration analysis,
of FGM plates can be found in the articles by Reddy and Arciniega (2006a,b). Further studies of
bending and vibration analyses of FGMs plates can be found in the articles of Reddy (2000), and
Della Croce and Venini (2004).



On the subject of computational models for shell structures, we focus our attention on tensor-
based finite element models (Harte and Eckstein, 1986). This approach is able to determine all
properties of the shell’s differential geometry exactly. Additional errors, introduced by
approximating the geometry of the midsurface of the shell (as in continuum-based finite element
models), are prevented from the beginning. Previous works of the authors using tensor-oriented
finite element formulations for linear analysis of laminated shells can be found in Arciniega and
Reddy (2005), and Reddy and Arciniega (2004).

In this paper, a large deformation analysis for functionally graded shells is presented. The
formulation is based on the first-order shear deformation theory with seven independent
parameters (Sansour, 1995; Bischoff and Ramm, 1997) where no plane stress assumption is
required (3D constitutive equations). A tensor-based finite element model is developed using
high-order Lagrange elements to preclude membrane shear locking. The gradation of the
material properties of the FGM shell is considered through the thickness. The material stiffness
tensor is obtained by Gauss integration. Numerical results are presented for typical benchmark
problems with applications to functionally graded shells.

1.2. Theoretical Formulation

The shell theory will be briefly discussed here. For a detailed development, one can consult the
paper of Arciniega and Reddy (2006) and references herein. The mathematical background
utilized in the following derivation is given in the books of Naghdi (1963) and (1972), Green and
Zerna (1968), and Pietraszkiewicz (1979).

Let us introduce in the region B ,(B,) a convected curvilinear coordinate system
{0'},i=1,2,3, such that the surface §°=0 defines the midsurface M (M ,) of the region
B B ,). The coordinate & is the measure of the distance between points P€B | (PeB )
and M €M , (M €M ), with —h/2< 8’ <h/2, where & is the thickness of the shell (Fig. 1).

Fig. 1. Shell continuum in the reference and current configurations.



Consider the motion y(X,¢) of the shell body B from the reference configuration B , to
the current configuration B,. Since a convected coordinate system {8’} has been adopted,
geometric quantities of the region B , are analogous to those defined in B . In the Lagrangian

description, the displacement of the particle X from the reference configuration to the current
configuration is given by the vector v(X,¢), i.e.

(1)

wherein the last line is in component form with respect to the region B .

We introduce the first kinematical assumption for the shell model: “the displacement field is
considered as a linear expansion of the thickness coordinate around the midsurface. The
transverse displacement is parabolic through the thickness of the shell”.

This assumption implies that

v(67)=u(6")+6'0(67)+(&)y(6) )

where

u(6)=ua', @(0°)=ga’, y(6")=y,a’ 3)
The underlined term of equation (2) is included to avoid Poisson locking (Bischoff and Ramm,
1997).

The position vector of the deformed shell can be obtained substituting equation (2) into (1).
Thus

x=Tr+6a,+(6°)y 4)
where T =r+u and a, =a,+ ¢@. The vector @ is also called difference vector (change of the
director of the midsurface). The director a, is, in general, neither a unit vector nor orthogonal to
M , . The configuration of the shell is uniquely determined by the displacement vector u of the

midsurface together with the difference vector @ and the additional variable ¥, or by seven

independent components of these vectors (Sansour, 1995).
We now introduce the Green strain tensor E as a measure of the strain for a material
description

1
E_E(C_G) (5)

where C=F'F is the right Cauchy-Green tensor, G = g g' ®g’ is the Riemannian metric in

the reference configuration and F =g, ®g' is the deformation gradient. We define the covariant
space and surface base vectors in the current configuration as g, and a, , respectively.

The shifter tensor p is a two-point tensor which relates the region B , to the reference

midsurface M , and it is useful to define the tensor E as



E=® (E)=p'Ep (6)
where @ (o) is the pull-back operator.
The tensor E can be expanded as a function of the thickness coordinate, i.e.
E=¢"+ 6% +(6)e +(6°) e +(6°)'e* (7)

The second assumption for the shell model asserts that: “quadratic and higher-order terms of

E , underlined in equation (7), are negligible”. Then, we arrive to the following decomposition

e’ =¢ea"®a’ +&)) (a" ®a’ +a’ ®a")+ela’ ®a’ )
g =elja"@a’ +el)(a" ®a’ +a’ ®a”) +el)a’ ®a’

()

where 8((;,5)., € and &) are functions of the tr1ple<u 0, \|I) After some manipulations we can

write them in terms of the seven components of the displacement field (Habip, 1965), i.e.

1
) _ o Ay, A g2
Eop = 2 (”a\ﬁ F gy —2b,pus + a1, — by, — by usuy ,

—chﬁ,(%)2 sy U 5+ bju/luw + bgulum + bibgulu},)

Eop = ((”a\ﬂ + @pe = 2Py = bty — by + 251ty + 01,0,
+a* ”/up@m - bﬂ(ps Upe — bj% Uyp — bﬁug Dia — b;”3 Pup T 2,50,
ity o @ 5 1ty 5O, Qs 5+ Ui U, DU, 5+ b, 0,
+bibju, @, +byblu )

1
8;03) == ¢a Ty, + bo/zl u; + alyu,uaq’y - bo/}% Uy + Qs , + bo/}ul q’s)

(1) = ((03 @ +a’ (%a(oy + 0,0, +2vu,, +2W3b§uﬂ )
£y = (2¢) +a”9,0,+ (@)’
2(y

&y =2 (v, + o) ©)
where Cop = baﬂb;; is the covariant third fundamental form of the reference surface. Note that the

component £\) vanishes when y, =0 (6-parameter formulation).
The second Piola-Kirchhoff stress tensor is used for the Lagrangian formulation and is

energetically-conjugate to the rate of Green strain tensor E (Reddy, 2004). Like E, the second
Piola-Kirchhoff stress tensor S is transformed to the midsurface M , by

S=p'sp” = (8) (10)

which is the pull-back operator of the contravariant tensor S.



Let M" denote the stress resultant tensor which is a symmetric tensor. The tensor M” is
defined as

[M“,M‘]:ﬁhh//1[1,93]§ﬂd93 (10

The scalar quantity g is the determinant of the shifter tensor p. The stress resultant tensors are

also energetically-conjugate to the strain resultants &. The stress resultant tensors may be
decomposed in component form as

0 _ N s Ok
M"=N%a,®a,+0"(a,®a, +a,®a,)+7" a, ®a,

0 M ()
M'=N"a,®a;+0%(a, ®a, +a,®a,)+T" a, ®a, (12)

() - (n) (n),
where N, 0“ and T* are membrane, shear and stretching components, respectively.

1.3. Functionally Graded Shells

In this section we consider a hyperelastic and inhomogeneous shell. The shell structure can
undergo large deformations (rotations and displacements) while the material response remains in
the elastic regime. We also consider the relation between the second Piola-Kirchhoff stress
tensor S and the Green strain tensor E is linear. It implies that

S=C-E (13)

where C is the fourth-order elasticity tensor. The tensor C is represented in convected
coordinates as

C=C"g g g, 08, (14)

where the components of C satisfy the following symmetry conditions

CH — i _ Citk _ oM (15)

Functionally graded materials (FGMs) are a special kind of composites in which the material
properties vary smoothly and continuously from one surface to the other. These materials are
microscopically inhomogeneous and are typically made from isotropic components. One of the
main advantages of FGMs is that it mitigates severe stress concentrations and singularities at
intersections between interfaces usually presented in laminate composites due to their abrupt
transitions in material compositions and properties. Applications of FGMs are extensive
especially in high-temperature environments such as nuclear reactors, chemical plants and high-
speed spacecrafts.

The materials in the bottom and top surfaces are usually metal and ceramic respectively (Fig.
2). Material properties at a point X are given by a combination between metal and ceramic
constituents, i.e. by the weighted average of the moduli of the constituents, namely

o(0’)=o.f+0,f, (16)

where the subscripts m and ¢ refer to the metal and ceramic constituents and f is the volume



fraction of the phase. The symbol @ denotes a generic material property.

163
Fully ceramic shell ;
~em 91
gs

Fully metal shell
Fig. 2. Functionally graded shell.

The volume fractions of the ceramic f, and metal f corresponding to the power law are
expressed as (Reddy, 2000; Praveen and Reddy, 1998; Reddy and Chin, 1998)

z 1

L) R "

where 7 is the volume fraction exponent which takes values greater than or equal to zero. The
value of n equal to zero represents a fully ceramic shell. Conversely, we have a fully metal shell
as n tends to infinity (Fig. 3).
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Fig. 3. Variation of the volume fraction function f, through the dimensionless thickness for

different values of power-law index ».



The components of the elasticity tensor C** (03 ) are functions of the thickness coordinate.
They can be written in terms of the convected base vectors as

C:C””(93)gi®gj®gk®g, (18)
which can be arranged in a matrix [C™] e M®® such that

1 1122 1133

C C C 0
1122 222 2233

C C C 0
1133 2233 3333

C C C 0

oS O O
S O O O

ijkl
= e e em o (19
0 0 0 0o C"" 0
0 0 0 0 0 C"" ox6
The components C** at each &’ are functions of only two independent variables. then
3
Cllll — C2222 — C3333 — E<9 )(I—V)
A+v)1-2v)
3
C1122 — C1133 — 02233 — E(e )V (20)
A+v)1-2v)
3
C1212 — C1313 — 2323 — E(e )
2(1+v)

where E (93> =FE f.+E, f, . The Poisson’s ratio v is considered constant through the thickness.

m

Hence
(e )=Clf. +Clf,
=CL L +CY
where C/Y' = C"™ —C™ and f,, f, are given in (17).

21)

1.4. Weak Formulation

The finite element framework is based on the principle of virtual work. Our analysis is restricted
to static cases. The virtual work statement is nothing but the weak form of the equilibrium
equations and it is valid for linear and nonlinear stress-strain relations (Reddy, 2002).

The abstract configuration solution of the shell is denoted by the set

C ={o=(wo.y)|0:A cR’—R xR xR} (22)

where A is the parametric space of the midsurface. Note that ® €C contains the same
amount of three-dimensional information as Eq. (2) to locate at any time arbitrary points in the
three-dimensional shell.



We express the weak formulation as

G(®,00)=G, (®,60)+G,, (P,60)=0 (23)

where

G (d),éd)):fM (M 5’ +M'" 5g")dQ (24)

gext(cp,5q>):—fM (p-Su+1-5@+k-5y)dQ
' (25)
—fw (P -Su+1-5¢+K - Sy)ds

For hyperelastic materials, the static part of the weak form of the equilibrium equations is the
first variation of an elastic potential energy function. This statement is known as the principle of
minimum total potential energy (Reddy, 2002). We define the elastic potential function

[1(c):C —R as

H(CI)):fBRpO‘PdV—fMR(p-u+l~(p+k-\lf)d£2

(26)
—fw (P’ u+l-0+Kk’-y)ds
The first variation of the potential energy is given by
G(®,60)=OTI(D,5®)=DI(D)[6D]|=0 (27)

To solve the nonlinear equations is to use the incremental/iterative method of Newton-
Raphson. This procedure requires a linearization of the weak form generating recurrence update
formulas. The linearization process relies on the concept of directional derivatives (Hughes and
Pister, 1978; Bonet and Wood, 1997). We assume that the external forces are conservative
(independent of @ ). Applying that procedure to equation (23) we obtain

LG(D,6P;AD) =G (D,5P)+DG(D,6D)[AD]+ 0 (AD) (28)

where the underlined term is called consistent tangent operator. Furthermore, we can write the
tangent operator as

DG(®,00)[A®|=VG(D,6D) AD (29)
since 0@ remains constant during the increment A® .

The iterative solution procedure goes as follows: given a configuration ®* €C ,
corresponding to iteration &, solve the linearized system

G(DF,60)+ VG(DF,50)- A =0 (30)

where A®* is the incremental change in the configuration of the shell. This increment is used to
update the shell configuration ®* — ®**' €C . Namely

O = dF + AD* (31)
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Notice that the use of the triple (u, (p,\ll) preserves the additive structure of the configuration

update of the shell.
The consistent tangent operator is decomposed in two parts: the material tangent operator and
the geometric tangent operator. Thus

DG (®,6D)[A®] = D,G(D,50)[AD|+ D,G (D, 5D) AD] (32)

The contribution of the external forces vanishes because they are conservative. The first term
which is the material part is given by

D,G(®,50)[a®]= | zl:(DM”

AD|-5¢")dQ (33)
and the geometric part by

D,G(®,50)[a®]= | Z(M” D" [AD])dQ (34)

R p=0

The material part of the tangent operator results from the directional derivative of the stress
resultants. After some manipulations we obtain

DM’ (®)[AD] = Z f w6 C-Ae’ d&° (35)

where C is the pull-back of the contravariant fourth-order elasticity tensor C. Substituting (35)
into (33) we arrive to

D, G(®,50)[AD] = f 22(53 B . Ae)dQ, (36)

R j=0 j=0

where Ag’ is can be easily calculated. The components of the fourth-order tensor B are the
material stiffness coefficients of the shell and are defined as

B = f O Cde®’, k=0, (37)

and are computed by Gauss integration.
The computation of virtual internal energy G. . and the tangent operator is not a trivial task.

Even for isotropic materials these expressions have an extremely complex form when
displacements and rotations are large.
Next, the finite element equations are obtained by interpolating the covariant components of

the kinematic variables in terms of the base vectors a” . Namely

u”(0 [Z” DN (&, 77)] ¢"(0)= [i 0 "NV (5’,7)]211‘
_ [Z%(_nN(_i) (5,77)]33

(38)
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where (1,9 ,y”’) denote the nodal values of the kinematic variables.

We then arrive to a system of highly nonlinear algebraic equations which can be written in
matrix form by means of the stiffness and tangent matrices. The solution is carried out by
subroutines written in FORTRAN.

1.5. Numerical Examples

In this section, numerical results obtained by the model developed herein are presented for shell
structures. Typical benchmark problems for isotropic and homogeneous shells are investigated
for bending behavior of their counterparts functionally graded shells.

Regular meshes of 025, 049 and Q81 high-order elements with seven degrees of freedom
per node were utilized in the finite element analysis (see Table 1). By increasing the p level or
refining the finite element mesh, we mitigate locking problems. Full Gauss integration rule is
employed in all examples.

Table 1. Number of degrees of freedom per element for different p levels

Element p level FSDT (DOF)
Q4 1 28
Q9 2 63
Q25 4 175
Q49 6 343
Q81 8 567

Roll-up of a functionally graded plate strip

We consider a FGM plate strip subjected to a bending distributed moment on the other end (Fig.
4). The isotropic and homogeneous counterpart has been considered Simo et al. (1990) as well as
Betsch et al. (1998). This problem is good to test the capability of the finite element model to
simulate large rotations on shells.

93
. 0’ M.
b
9]

Fig. 4. Cantilever FGM plate strip under end bending moment.
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The material properties and geometry of the plate are

E,=0.7x10", E =1.51x10", v=023
L=120, b=1.0, h=0.1
M, = 65886.17926

Figures 5 and 6 depict tip displacements of the cantilever strip plate versus the end bending
moment for various volume fraction exponents # (from fully ceramic to fully metal). We utilize a
regular mesh of 1x8025 elements for the finite element discretization. The Newton method
exhibits a good rate of convergence until some displacement level and then it diverges (for
inhomogeneous shell cases). It is not clear for the authors why this problem happens. It seems
that for these cases we do not have real solutions. However, before arriving to any conclusion
further studies are needed.

0.8

0.7 —

0.6 —

0.5 —

M /My 04 —

2 0 2 4 6 8 10 12 14 16
Deflections at the tip

Fig. 5. Tip-deflection —u_,_ vs. end moment M for the FGM plate strip.

Figure 7 shows the undeformed and deformed configuration of a FGM strip plate for various
load stages and n=1.0. The plate shows large rotations beyond 180° with deformed
configurations similar to the homogeneous case.

Annular FGM plate under end shear force

We analyze an annular FGM plate subjected to a distributed transverse shear force (Fig. 8). This
benchmark problem was considered for homogeneous and isotropic plates by Biichter and Ramm
(1992) and Sansour and Kollmann (2000); and for multilayered composites by Arciniega and
Reddy (2006). The material properties are the same as the last example and will be used in all
examples. The geometric quantities are given by

13



R =6,R =10, h=0.03

for a maximum distributed force of ¢, =20.0.

0.8

_ ( -\
—&—  Ceramic

77 —— n-02 |
0.6 — —O— n=05 |—
05 T —A— n=10 ||
o y | —X— n=20 |
M/MREF 0.4 — £ | —o— n=50 |[
03 — ¥ Mewl )|
0.2 — —
0.1 — —

0 2 4 6 8 10 12 14 16
Deflections at the tip

Fig. 6. Tip-deflection u_,_ vs. end moment M for the FGM plate strip.
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Fig. 7. Deformed configurations of a FGM plate (» = 1.0) under end bending moment (load
values M /M., =0.075,0.15,...,0.6,0.625).
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Fig. 8. Annular FGM plate strip under transverse end shear force.
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annular plate strip.

Fig. 9. Transverse displacement curves at point 4 vs. shear force F =4g of the

15

The plate is modeled by polar coordinates. A regular mesh of 1x5049 elements (p level
equal to 6) is used in the present analysis. Computation is performed by the Newton-Raphson
method with 80 load steps and convergence tolerance for the residual forces of 1.0x107*.

The shear load versus displacement curves for two characteristic points are depicted in
Figures 9 and 10. The deformed configurations of a FGM annular plate for various load levels
and n=2.0 is shown in Fig. 11. It is clear that the plate undergoes large displacements at the
corresponding loading of F =80.

cantilever



80

—1| —&— Ceramic

12 14 16

10

Deflection at point B

4q of the cantilever

Fig. 10. Transverse displacement curves at point B vs. shear force F

annular plate strip.

=
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2.0) under transverse end shear

Fig. 11. Deformed configurations of a FGM plate strip (n

80).

9

force (load values F =10,20,..
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Pull-out of a functionally graded cylindrical shell

The functionally graded cylindrical shell with free ends is subjected to two opposite loads (Fig.
12). The homogeneous case was considered by Brank et al. (1995) and Sansour and Kollmann
(2000), among others. The following geometrical data is used in the analysis

L =10.35, R=4.953, h=0.094

An octant of the shell is modeled using 2x2 Q81 elements which is enough to overcome
locking problems. The Newton-Raphson method with 80 load steps is utilized with equal load
steps of 60000. The adopted error tolerance for the residual was 1.0x107.

Fig. 12. Pull-out of a FGM cylinder with free edges.

Figures 13 to 15 show the radial displacements at points 4, B and C of the shell, respectively.
Convergence rates for this example are quite good (3 to 5 iterations per load step). As expected,
bending response of FGM cylinders lies in between of the fully ceramic and fully metal shells.

The deformed configurations for a FGM cylindrical shell is depicted in Fig. 16 for P =5.1x10°
and n=1.0.

FGM hemisphere under internal pressure
The last example considered is a cylindrical FGM shell under internal pressure (Fig. 17). This is

not a following loading (independent of the displacements).The cylinder has fixed boundary
conditions on both ends. The geometric data is as follows:

a=20.0,R=5.0,h=0.01
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Fig. 13. Radial displacements at point 4 (u

edges.

Fig. 14. Radial displacements at point B (—u

edges.
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FGM hemisphere under internal pressure

The last example considered is a cylindrical FGM shell under internal pressure (Fig. 17). The
cylinder has fixed boundary conditions on both ends. The geometric data is as follows:
a=20.0,R=5.0,A=0.01

\
Fig. 17. FGM cylindrical shell under internal pressure.

A regular mesh of 2x2081 elements is used in the analysis. We take advantage of the
symmetry of the shell and only an octant of the shell is considered as the computational domain.
Figure 18 shows the radial deflections at the central point versus the internal pressure for FGM
cylinders. We notice that FGM cylinders with low values of n exhibit stiffer response than those
with high volume fraction exponent (more metal than ceramic). The final configuration of a
FGM cylinder for n=5.0 is depict‘ed in ‘F ig. ‘19. ‘ ‘ ‘ ‘ ]
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Fig. 18. Radial deflection at 4 vs. pressure load (Q =10°¢) of a FGM cylindrical shell.
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Fig. 19. Deformed configuration of a FGM cylindrical shell. Loading ¢ = 3.6x10° (n = 5.0).

1.6. Conclusions

In this paper we present a large deformation analysis for functionally graded shells. We consider
a through-the-thickness variation of the material properties of the FGM shell which is made of
two isotropic constituents. The gradation of properties through the thickness is assumed to be of
the power law type. A tensor-based finite element model is developed for geometric nonlinear
analysis of the shell. This approach showed to be reliable and efficient. The derived first-order
shell theory with seven parameters with exact nonlinear deformations is consistent and simple. It
incorporates thickness changes in the model, and then full 3D constitutive equations are utilized.
A family of High-order Lagrangian elements was introduced to avoid membrane and shear
locking for shells. We found that the nonlinear bending response of FGM shells under
mechanical loading lies between that of ceramic and metal shells, as expected. The patterns of
load-displacement equilibrium curves of FGM shells are similar to those of isotropic and
homogeneous counterparts. Numerical examples for plates and cylindrical shells, presented
herein, illustrate the validity of the present approach and the developed formulation for FGM

shells.
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2. MIXED LEAST-SQUARES FINITE ELEMENT MODELS FOR
STATIC AND FREE VIBRATION ANALYSIS OF PLATES

2.1. Introduction

Finite element models for the analysis of multilayered composite plate and shell structures have
been widely developed in the last few decades. In overview, the main approaches to establish
plate and shell theories have been in the framework of the so called axiomatic theories. The
formulations differ in equivalent single-layer or layerwise variable descriptions and also in the
choice for the unknown variables, resulting in displacement, stress or mixed formulations [1-3].
Traditionally, variational principles have been established to derive governing equations
consistent with the chosen formulations. The widespread displacement formulations usually
relate to the well-known principle of virtual displacement and the alternative mixed formulations
typically derive from the Hu-Washizu or the Hellinger-Reissner variational principles [4,5].
Naturally, classical finite element models that were originally developed for one-layered
isotropic structures were extended in a straightforward manner to multilayered plates and shells
[6,7]. The classical lamination theory (CLT), first-order shear deformation theory (FSDT) and
high-order theories have been known to provide a sufficiently accurate description of the global
response of multilayered structures, as long as thin to moderately thick. Understandably, for a
detailed response of individual layers or local phenomena description one must use layerwise
theories (LWT) or the so called zig-zag theories that were indeed entirely originated and devoted
to layered structures. In fact, one crucial issue for these theories is the fulfilment of the c,’-
requirements. Basically, this means that displacements and transverse stresses must be C'-
continuous functions in the thickness direction due to interlaminar compatibility and equilibrium
reasons.

The motivation for the proposed finite element models comes from earlier works on
mixed finite element formulations based on least-squares variational principle. Namely, works
by Pontaza and Reddy [8], Pontaza [9] and also, Duan and Lin [10]. Overall, the least-squares
finite element formulations have shown promising theoretical and computational advantages,
both in fluid and in solid mechanics. Specifically, Pontaza and Reddy [8] developed a mixed
model based on least-squares formulation for the bending of single-layered isotropic plates,
using the classical plate theory and first-order shear deformation theory. The prospect of
extending this model gave rise to the proposed mixed least-squares FSDT model for static
analysis of laminated composite plates. Then, a pioneer attempt to use least-squares formulation
in modal analysis led to the development of the mixed least-squares FSDT finite element model
for free vibration analysis of laminated composite plates.

The least-squares formulations as any weighted residual formulation provide an
alternative approach to the weak form finite element models, both displacement-based and
mixed. In the framework of FSDT weak form models, displacement formulations are known to
encounter computational difficulties when modelling thin plates. The finite elements become
excessively stiff, which results in an erroneous underprediction of displacements in static
analysis or else in a severe overprediction of frequencies in free vibration analysis. This
phenomenon is known as shear-locking. In essence, it is due to the inability of shear deformable
elements to accurately model bending within an element under a state of zero transverse shearing
strain. Higher-order elements experience relatively less locking, but sometimes at the expense of
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a slower convergence. Usually shear-locking problems are only avoided by numerical integration
techniques. Another possibility is mixed formulations, where in addition to generalized
displacements the stress resultants are also used as independent variables [11,12]. Mixed finite
element models based on weak formulations need however, that the finite element approximation
spaces satisfy a so called Inf-Sup condition, in order to be consistent models [13]. This fulfilment
is in general known to be rather difficult to prove analytically. Furthermore, mixed weak form
models yield symmetric but not positive-definite stiffness matrices, adding numerical complexity
to the models. Alternatively, within weighted residual formulations, least-squares finite element
models are distinctive for being solely based on the idea of minimizing the error introduced in
the approximation of the governing equations. Then, the benefit of using least-squares variational
principle along with mixed formulations is that it leads to a variational unconstrained
minimization problem, where the finite element approximation spaces can be chosen
independently. Therefore, stability requirements such as the Inf-Sup condition never arise. This
is precisely the theoretical merit of mixed least-squares formulations as it was demonstrated in
the aforementioned works on this matter [8-10].

The proposed mixed least-squares finite element models consider the FSDT with
generalized displacements and stress resultants as independent variables, using equal-order
interpolation, for either static or free vibration analysis of laminated composite plates.
Specifically, high-order C° basis functions and full integration are used to develop the discrete
finite element models, since it was established to be the appropriate way to truly minimize the
least-squares functional. In fact, Pontaza and Reddy [8] and later Pontaza [9] demonstrated the
exponential decay of the least-squares functional with increasing order of the element.
Furthermore, the mixed least-squares model for static analysis uses the classical C° Lagrange
basis functions, whereas the model for free vibration analysis developed later uses instead C°
interpolant polynomials of Gauss-Lobatto-Legendre quadrature points, which are more suitable
basis functions for high-order elements [14]. Both mixed least-squares discrete models, once the
boundary conditions are properly imposed, yield a symmetric and positive-definite stiffness
matrix. This is another benefit of mixed least-squares models as opposed to mixed weak form
models, which is computationally preferable. Most interestingly, the pioneer mixed least-squares
model for free vibration analysis yields a quadratic eigenvalue problem with symmetric matrices,
which is rather atypical within conservative systems. Ultimately, both proposed models exhibit
excellent predictive capabilities in the framework of the FSDT as demonstrated by numerical
examples presented hereafter. In particular, it is also shown that both least-squares models based
on high-order basis functions are insensitive to shear-locking.

This report is outlined as follows. It starts by introducing the governing equations
consistent with the mixed FSDT finite element models for both static and free vibration analysis
of laminated composite plates. Then, the proposed models are derived from the least-squares
formulation and related finite element specifics are addressed. Selected numerical examples are
presented to assess the predictive capabilities of the mixed least-squares models through static
and free vibration analysis of four laminated composite plates with different boundary conditions
and various side-to-thickness ratios. Lastly, the overall conclusions are discussed.

2.2 Governing Equations

Consider a laminated composite plate of total thickness 4 and composed of N orthotropic layers,
as shown in Fig. 1. Typically, the layers are unidirectional fibre-reinforced laminas whose in-
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plane material coordinate axes are parallel and transverse to the fibres direction. Thus, the
orientation of the kth layer is defined by an angle 6; between the plate coordinate x and the fibres
direction. In the xy-plane, Q represents the undeformed midplane of the plate and Q the open
bounded region with the boundary I'=0Q. The z-axis is taken positive upward from the
midplane. Specifically, the kth layer is located between the interfaces z=z, and z=z,,, in the
thickness direction.

[ =
. /} =N
=z ::i:::::::::::z_:zhl
—————————————— Z=Zj;
B +
ﬁ DR Y
Y I B
. ' k=1

Figure 1. Notations for a laminated composite plate.

As previously mentioned, the adopted mixed formulation uses the generalized displacements and
stress resultants as independent variables. Accordingly, for static analysis of laminated
composite plates under a transverse load g(x,y), the governing equations by the FSDT are the
following (see Reddy [7]):

Jd.N=0 in Q (1)
V-Q+g=0 in Q 2)
0. M-Q=0 in Q (3)
N-Adu-BJ®=0 in Q (4)
M-BJd,u-DJ ®=0 in Q )
Q-A(Vw+®)=0 in Q (6)

For free vibration analysis, the loads are set to zero and the variables assume a periodic solution
in time, with a frequency w. Hence, the governing equations by the FSDT for free vibration
analysis of laminated composite plates are in turn, as follows (see Reddy [7]):

0N+’ Iju+@’l,®=0 in Q (7)
V- Q+w’l,w=0 in Q (8)
OM-Q+0’lu+@’,®=0 inQ 9)
N-AJ.u-Bo,®=0 in Q (10)
M-BJ,u-DJ ®=0 in Q (11)
Q-A(Vw+®@)=0 in Q (12)

For convenience, a compact notation is applied here which proves to be rather useful to develop
the least-squares functional afterwards. Overall, for static analysis the governing equations
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include the plate equilibrium equations in Eqs. (1)-(3) and the laminate linear constitutive
equations in Egs. (4)-(6), while for free vibration analysis the governing equations include the
plate equations of periodic motion in Egs. (7)-(9) and the same laminate constitutive equations
repeated in Egs. (10)-(12), all written in terms of the independent variables. Specifically, in the
current notation, the in-plane displacements u, the transverse deflection w, the rotations @, the
in-plane force resultants N, the moment resultants M and the transverse force resultants Q, are
assumed to be in the form specified below:

u=[u, v]". N=[Nv, N, N (13a)
w=w, M=[M_ M, M (13b)
o=[¢, ¢].Q=[0. o] (13¢)

In addition, the form of the differential operator used repeatedly in the previous governing
equations is given by:

r_|9/ox 0 /oy
Qe_[ 0 9/oy a/ax} 14

In the laminate constitutive equations, equally written in Egs. (4)-(6) and in Egs. (10)-(12), a
matrix form for the laminate stiffnesses is considered as follows:

4, A4, A4 y y
A=|4, Ay Ay|, A= K{ » 45} (15a)
4 4 4 Ay Ay
16 26 66
B, B, B D, D, Dy
B=|B, By, By|-D=|D, D, Dy (15b)
B B B D D D

Here, A4;; are called the extensional stiffnesses, D;; the bending stiffnesses and B the bending-
extensional coupling stiffnesses. The factor K represents the shear correction coefficient, which
takes the standard value 5/6 in the later numerical examples. Specifically, the laminate
stiffnesses 4;;, B; and Dj; are in turn defined in terms of the lamina stiffnesses, i.e. the lamina
plane-stress reduced stiffnesses transformed to the xy-plane of the laminate, as shown (see Reddy

[7D):

N —
4,=>090z, -2,) (16a)
k=1
1Y —
8,=>>0", =) (16b)
k=1
1&, —
D, =§ZQ,}")(Z;3+1 -22) (16¢)

an
i
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Furthermore, the mass moments of inertia /; introduced in the plate equations of periodic motion
in Egs. (7)-(9) are defined in terms of the laminas density, as also shown:

k)(zk+1 _Zk) (17a)

O’N

I
M=
Sl

-
I

ez, -22) (17b)

M~
Il

i)

S~

M= IM=

92, -21) (17¢)

~
%)
Il
i}
o=

b
o

For completeness, the proper boundary conditions for all possible support types used in a
rectangular laminated composite plate, as illustrated in Fig. 1, are now specified:

x=0,a: vp=w,=¢, =N, =M _=0 on I', (18a)
uy=w,=¢,=N,=M_=0 on I, (18b)
N =N,=M,=M_,=0=0 onT, (18¢)
u0=v0=w0:¢x=¢y=0 on I'. (18d)
y=0,b uO:wO:(bY:NW:Myy:O on I, (19a)
Vo =W, =0, :ny =Myy =0 on I, (19b)
N,=N,=M, =M =0, =0 onl; (19¢)
Uy =vo=w, =0, =¢,=0 on I (19d)

Clearly, combinations of the boundary conditions in Egs. (18) and (19) can be made, in view of
the support types considered for each of the four edges of the rectangular laminate. The notation
used hereafter for the boundary conditions is such that each edge is specified as simply supported
(S), free (F) or clamped (C), strictly in this sequence: x=0, x=a, y=0 and y=»5. For simply
supported boundary conditions two types of support are possible, usually named S1 and S2.
Whichever is being used is specified in the end. Hence, the notation FFSS1 for example, is used
to denote a rectangular laminate for which the edges x=0,a are free and the edges y =0,b are

simply supported of type 1.
2.3 Least-Squares Formulation

From a practical standpoint, it is best to develop a least-squares finite element model that allows
the use of C” basis functions in order to reduce the higher regularity requirements of any
weighted residual formulation (see Pontaza [9]). Therefore, whenever necessary the governing
equations should be transformed into an equivalent first-order system, which implies that
additional independent variables need to be introduced. Nonetheless, this transformation can be
argued to be somewhat beneficial, as the auxiliary variables may represent physically meaningful
variables, in the framework of mixed formulations. In the present case though, both systems of
governing equations are already of first-order, namely the system given by Egs. (1)-(6) for static
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analysis and the system given by Eqgs. (7)-(12) for free vibration analysis. Hence, it is only
necessary to develop the least-squares functional appropriate to each analysis and minimize it
with respect to the chosen approximation spaces to obtain the correspondent least-squares finite
element model.

Basically, the least-squares functional is defined by measuring the residuals of the
governing equations in terms of suitable norms. To do so, standard notation is used. Specifically,

the norm corresponding to the Sobolev space H*(Q), s>0 is denoted by ||| , and H*(Q)

represents the product space [H * (Q)]" , where 7 is the number of space dimensions.

Thus, the least-squares functional for the static analysis of laminated composite plates is
based on the norms of Egs. (1)-(6), as follows:

JS(II,W,(D,N,M,Q;q)=%U QINHZ’Q +||V'Q+q”§,g +

+|arm-q[ +[N-A2.u-B2 [, + (20)

+|M-Ba,u-Da, @, +HQ—A(VW+<D)H )

2

0,0

Similarly, the least-squares functional for free vibration analysis is, in turn, based on the norms
of Egs. (7)-(12), as follows:

J, (u,w,®,N,M,Q; ) = %( H I N+ @’ lu+ @[, ® Hzﬂ +

2 2
+Hv.Q+a)210wHOQ+‘QZM—Q+w211u+a)212(I>H +
> 0,Q

21)
+|N-40,u-B2, @, +[M-Bdu-Dy. @[ +
A 2
|o-awwraf )
Accordingly, the least-squares principle can be stated as:
Find (u, w,(I),N,M,Q)e X such as for all (s,t, ‘I’,O,P,R)e X
Js(u,w,® N,M,Q;q)< J,(s,z, ¥,0,P,R;q), if static analysis (22)

J, (u, w,®,N,M,Q; a)) <J, (s,t, ¥Y,0,P,R; a)) , if free vibration analysis (23)
The space X is defined below and satisfies the support type boundary conditions:
X ={(u,w,® N,M,Q)e H'(Q)x H'(Q)xH'(Q)x H'(Q)xH'(Q)x H'(Q)} (24)

Hence, the least-squares formulation leads the static and free vibration analysis of laminated
composite plates to the unconstrained minimization problems given by Eq. (22) and Eq. (23),
respectively. Subsequently, the finite element models are developed by minimizing the least-
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squares functional. Specifically, the Euler-Lagrange equations are derived for each minimization
problem, so as to obtain the least-squares variational problem for static and free vibration
analysis.

2.4 Finite Element Models

The mentioned least-squares variational problems give rise to the corresponding finite element
models for static and free vibration analysis of laminated composite plates. Accordingly, the
infinite dimensional space X is now restricted to the finite-dimensional subspace Xj,, where A
denotes the mesh parameter and p the order for the variables basis functions.

Ultimately, the mixed least-squares finite element model for static analysis takes the following
matrix form:

K" o K ||, F

g J i

: - : D=9l (25)
uQ, 0,0, 0,
K'® o K220 F,

Ji yj

In addition, the mixed least-squares model for free vibration analysis develops into a quadratic
eigenvalue problem as follows, also in matrix form:

uu v ”Qy uu . qu uu .. qu

K; K, C; C; M; M, u; 0
o S B B S A M : S (26)
uQ, 0,0, uQ, 0,0, w, 0,0,

K; e K Citoe Gy M;> M= Qy,- 0

Both finite element models yield only symmetric matrices by means of the least-squares
formulation. Specifically, in view of the adopted FSDT mixed formulation, all matrices can be
structured in 13x13 submatrices by considering the variables separately: namely, the 5
generalized displacements and the 8 stress resultants. The explicit integral expressions of all
nonzero submatrices Kj;, C;; and M;; and all nonzero subvectors F; are included in Appendix A.
The stiffness matrix K is shared by both models and it is not only symmetric but also positive-
definite, once the boundary conditions are properly imposed. This fact allows the use of robust
solvers for the static analysis of laminated composite plates by the mixed least-squares model. In
the quadratic eigenvalue problem, besides the stiffness matrix K, both C and M appear as indeed
mass matrices. The difference is that the matrix M refers to the mass relation among generalized
displacements only, whereas the matrix C translates the mass coupling between generalized
displacements and stress resultants.

In view of the finite element method, the approach for numerically evaluating the
integrals implicit in Egs. (25) and (26) is to map the finite elements that form the entire model
into a master element. For both least-squares models implemented, the integrals are evaluated
using full integration through Gauss quadrature rules, which implies a master element with the
coordinate system: —1<(&,7)<1. Over this master element, the variables are approximated by

equal high-order C° basis functions as exemplified for the transverse deflection below:
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wo(&m) = (Em)= Y w0 (Em) @)

Here, w; denotes nodal values for the transverse deflection, ¢;” the associated high-order C° basis
functions and » the number of nodes in the finite element.

Specifically, the mixed least-squares model for static analysis uses the classical C°
Lagrange basis functions, whereas the later model for free vibration analysis uses instead C°
interpolant polynomials of Gauss-Lobatto-Legendre quadrature points. The last basis functions
were initially used in the spectral element method and are in fact more suitable for high-order
finite elements. In any case, the two-dimensional basis functions are given by tensor products of
the corresponding one-dimensional basis functions.

The well-known one-dimensional Lagrange basis functions of order p = N-1 can be defined by N
equally spaced nodes &, given &, =—1 and &, =1, as follows:

o, (§)=f[ g__i; (28)

J#

Alternatively, the one-dimensional basis functions derived from Gauss-Lobatto-Legendre points
of order p = N-1, can be written using the Legendre polynomial of same order Py.;, as follows:

_ (l_fz)Pz:u(‘f)
2= 0P E)E-2) @)

where, & represents N nodes now given by the roots of (1 -~ 52)P];_1 (£)=0 in the interval [-1,1].

For more details on these basis functions see Warburton et al [14].

Furthermore, the implemented least-squares models for static and free vibration analysis differ
also in the Gauss quadrature rule used. Gauss-Legendre rule is used for static analysis, whereas
Gauss-Lobatto-Legendre rule is conveniently employed for free vibration analysis, due to the
chosen basis functions.

The global system of equations either for static or free vibration analysis is then
assembled from the element contributions by the standard summation approach, followed by
imposition of the appropriate boundary conditions (see Reddy [6]). In fact, unlike weak form
finite element models that allow weak imposition of stress resultants by integral boundary terms,
the least-squares models only allow strong imposition of the boundary conditions both for stress
resultants and generalized displacements.

2.5 Computational Specifics

The mixed least-squares model for static analysis of laminated composite plates yields a
symmetric and positive-definite system of algebraic equations. Hence, its numerical solution is in
fact straightforward. However, post-computation of strains and stresses such that no numerical
differentiation is carried out requires a more attentive procedure.

In detail, the membrane and flexural strains are computed first using the following
laminate constitutive relations, once the solution of stress resultants is known:
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M—EDSI,Q—_E (30)

In these equations, the implied vector form for the stress resultants is previously defined in Eq.
(13) and the matrix form for the laminate stiffnesses is given by Eq. (15). Hence, only the
appropriate form for the strain components needs to be specified, as follows:

e =[e0 & e =lel &, plLe=[r (31)

Secondly, the in-plane and transverse stresses are computed given the prior membrane and
flexural strains, again through the laminate constitutive relations but yet in another form:

A A (k)
6 =Q" (" +z¢'), 60 =Q "¢’ (32)

Specifically, the in-plane stresses are computed on the top and bottom of each kth layer while the
transverse stresses are only computed within each kth layer, in agreement with the FSDT stress
variations through the laminate thickness. For clearness, in the previous equations, it is
considered the following matrix form for the lamina stiffnesses:

— 7k

Ql Qz Q16 =y — k)
Q(k) = glz gzz gzs > Q(k) = {%5 845} (33)
O O O ® 44

Additionally, the stress components are defined in a similar manner as the strains components
before, as follows:

(k) () (k)]T A(k)_[ (k) GIk
w 0, o.],6"=|lo. o, (34)

o <[o
The post-computation described for static analysis of laminated composite plates ensures that the
computed stresses experience no loss of accuracy through differentiation and are evaluated in
nodal points as any other variable.

Regarding the free vibration analysis of laminated composite plates, the mixed least-
squares model yields a quadratic eigenvalue problem involving symmetric matrices. Since
numerical algorithm design for quadratic eigenproblems is still an active research topic, the main
endeavor is to pursue an efficient method to solve the quadratic eigenproblem under
consideration.

One approach is to use methods that tackle the quadratic eigenproblem directly, usually
variants of Newton’s method that find one eigenpair at a time. However, the availability of such
methods is rather deficient. The approach actually chosen is to transform the quadratic
eigenproblem into an equivalent “linear” generalized eigenproblem to allow the use of traditional
methods for solution of eigenvalue problems (see Bai et al [15]). These methods are in fact
widely available. In detail, the current implementation uses ARPACK subroutines, which have a
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long proven robustness and accuracy, to compute a few eigenvalues and eigenvectors with
Implicitly Restarted Arnoldi Methods (IRAM).
Specifically, the assembled quadratic eigenvalue problem is of the following form:

([k]+a[c]+ 2 [M]){a}={0}, 1= & (35)
For reasons soon made clear, an invert spectral transformation is first considered, as follows:
([p]+ ulc]+ w2 (K] {a}={o}, u=1/2 (36)

Then, the desired transformation into an equivalent generalized eigenproblem takes the form
specified below:

[4]{x}=u[B]{x} (37)

s ol ()

Ultimately, this approach reduces the original quadratic eigenproblem into a non-symmetric
generalized eigenproblem, where the matrix B is still symmetric and positive-definite. In fact, the
reason for the prior invert transformation is to ensure that the matrix B is positive-definite by
depending on the stiffness matrix K rather than the mass matrix M (besides the identity matrix /).
Considering the above transformations, the equivalent generalized eigenproblem can be
efficiently solved by ARPACK subroutines. In addition, the few computed eigenvalues and
eigenvectors of the equivalent eigenproblem must then be used to obtain the eigenvalues and
eigenvectors of the original quadratic eigenproblem through the relations above.

Finally, the specific nature of the finite element matrices K, C and M, render the quadratic
eigenproblem and the equivalent generalized eigenproblem generally complex solutions.
However, once the original eigenvalues and eigenvectors are recovered, the complex solutions
(in conjugate pairs) show a negligible imaginary part relatively to the real counterpart. So, for
practical purposes, only the real part of the solution of free vibration analysis of laminated
composite plates is reported in the following numerical examples.

2.6 Numerical Examples

The predictive capabilities of the proposed mixed least-squares models are now demonstrated
through selected problems of static and free vibration analysis of laminated composite plates.
Specifically, four square laminated composite plates are considered with different boundary
conditions and a range of side-to-thickness ratios, covering thick to thin laminates. The particular
laminates under analysis are two cross-ply laminates (0/90) and (0/90/0/90/0) and two angle-ply
laminates (-45/45) and (30/-60/60/-30). In addition, the selected problems of static analysis
concern laminated composite plates under a uniformly distributed load of intensity ¢, .

The material properties for all layers of the given laminates are assumed to be the same,
as shown:
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E /E, =25, G,=G,=05E,, G,, =0.2E,, v, =025 (39)
Moreover, the subsequent numerical results both in graphical and tabular forms for the main
variables are nondimensionalized, as specified below:

E.h’ — 7Y

W=w0£ oh JxlOZ’M:M 0 g-0l% (40a)
a g, a g, aq,

§h :G(k)( h’ ]’ 6" :6(/()(Lj (40b)

a2q0 aq,

2

sool ) [2 (1)
h )\ E,

Analytical solutions are also presented alongside the numerical results for comparison. Basically,
the well-known FSDT Navier solutions or Lévy solutions for static or free vibration analysis of
laminated composite plates are reported, according to the problem under analysis (see Reddy
[7]). For static analysis, the Navier series are evaluated for m,n=1,...,40 and the Lévy series for
n=1..40.

Cross-ply laminates

The first selected problem is the static analysis of the antisymmetric laminate (0/90) with SSSS1
boundary conditions. A uniform mesh of 4x4 square elements is used to model the composite
plate and an increasing order for the mixed least-squares element is considered. Specifically, 4th,
6th and 8th-order elements are successively applied in order to investigate the p-convergence of
the proposed model. The computed results are summarized in Table 1.

Table 1. Static results for the laminate (0/90) SSSS1 using a uniform mesh 4x4.

alh p-order  W.5) M, (e.2) M,00) 00 72(2) (00 oL0.4)
10 4 1.9469 0.6265 -0.1621 3.4675 1.0712 0.0973 0.5944
6 1.9469 0.6268 -0.1605 3.4698 1.0716 0.0963 0.5948
8 1.9469 0.6268 -0.1604 3.4703 1.0716 0.0962 0.5949
Analytical 1.9469 0.6268 -0.1603 3.4194 1.0716 0.0962 0.5862
20 4 1.7583 0.6288 -0.1609 3.4801 1.0745 0.0965 0.5966
6 1.7582 0.6291 -0.1580 3.4883 1.0748 0.0948 0.5980
8 1.7582 0.6291 -0.1576  3.4880 1.0748 0.0946 0.5979
Analytical 1.7582 0.6290 -0.1575 3.4369 1.0748 0.0945 0.5892
100 4 1.6980 0.6297 -0.1621  3.4560 1.0757 0.0973 0.5924
6 1.6980 0.6301 -0.1571 3.4938 1.0762 0.0943 0.5989
8 1.6981 0.6301 -0.1561 3.4936 1.0763 0.0937 0.5989

Analytical 1.6980  0.6300  -0.1558  3.4427 1.0762  0.0935  0.5902
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The effect of mesh refinement is examined as well using only 4th-order elements and a uniform
mesh of 4x4, 5x5 and 8x8 square elements. These numerical results are in turn shown in Table 2.
Both tables include the results for transverse deflection, stress resultants and stresses, considering
side-to-thickness ratios of 10, 20 and 100. In particular, for all stress results tabulated henceforth
the right superscript specifies the layer where the results are referred to and when necessary
also the bottom or top interface by b or ¢, respectively. Furthermore, Navier analytical solutions

for this problem are shown throughout both tables.

Table 2. Static results for the laminate (0/90) SSSS1 using the 4th-order element.

a/h  Mesh wle,e) M, (5.4) M,00) 0,(x0) (e 71700) 50(0,2)
10 4x4 1.9469 0.6265 -0.1621 3.4675 1.0712 0.0973 0.5944
5%5 1.9469 0.6268 -0.1612 3.4709 1.0716 0.0967 0.5950
88 1.9469 0.6267 -0.1605 3.4707 1.0716 0.0963 0.5950
Analytical 1.9469 0.6268 -0.1603 3.4194 1.0716 0.0962 0.5862
20 4x4 1.7583 0.6288 -0.1609  3.4801 1.0745 0.0965 0.5966
5%5 1.7583 0.6291 -0.1594 3.4886 1.0748 0.0957 0.5980
88 1.7582 0.6290 -0.1580 3.48%2 1.0748 0.0948 0.5980
Analytical 1.7582 0.6290 -0.1575 3.4369 1.0748 0.0945 0.5892
100 4x4 1.6980 0.6297 -0.1621 3.4560 1.0757 0.0973 0.5924
5%5 1.6980 0.6300 -0.1598 3.4968 1.0762 0.0959 0.5995
8x& 1.6980 0.6300 -0.1572  3.4926 1.0762 0.0943 0.5987
Analytical 1.6980 0.6300 -0.1558  3.4427 1.0762 0.0935 0.5902

Overall, the numerical results in Tables 1 and 2 are in good agreement with the analytical
solutions for the entire range of side-to-thickness ratios analyzed. In fact, the centre transverse
deflection is rightly predicted using just 4th-order elements even when a thin laminate is
considered (with a side-to-thickness ratio of 100). Most notably, convergence towards the
analytical solution is verified, either with p- or A-refinements, as should be expected. Actually,
an exact study on the asymptotic behaviour of mixed finite elements based on least-squares
formulation can be found in Pontaza [9]. In the case of the transverse force resultant and
transverse stress, it is noted a slight discrepancy between the analytical and numerical results,
which is believed to be due to a not as accurate analytical representation.

In Fig. 2, it 1s shown the predictive distributions of the in-plane stresses o,, and o,, along
the laminate thickness, using a side-to-thickness ratio of 10. The proper Navier solution is plotted
alongside the numerical results obtained with the 8th-order element in a 4x4 mesh.
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Figure 2. In-plane stresses for the laminate (0/90) SSSS1 with a/2=10.

Continuing the analysis of the same antisymmetric laminate (0/90) with SSSS1 boundary
conditions, the problem of free vibration is considered next. In this case, a uniform mesh of 4x4
square elements is used together with the 4th-order mixed least-squares element. The results for
the fundamental frequency using the same side-to-thickness ratios as before are presented in
Table 3, along with the Navier solutions.

Table 3. Free vibration results for the laminate (0/90) SSSS1
using a uniform mesh 4x4.

a/h  p-order @,
10 4 8.9006
Analytical  8.9001
20 4 9.4746
Analytical  9.4745
100 4 9.6873

Analytical  9.6873

As mentioned earlier, the mixed least-squares model for free vibration analysis yields a
quadratic eigenproblem, that to be later solved by ARPACK subroutines requires an invert
spectral transformation followed by another transformation into an equivalent generalized
eigenproblem. With this mind, the smaller eigenvalues of the original quadratic eigenproblem
correspond to the larger eigenvalues of the generalized eigenproblem. Hence, to compute the
lower natural frequencies of the quadratic eigenproblem, it is specified to ARPACK to extract
the eigenvalues of largest real part. Specifically, the results in Table 3 are obtained by specifying
the extraction of 2 eigenvalues (which come as a complex conjugate pair) using 50 Arnoldi basis
vectors. In fact, the choice of both these numbers for an optimal performance of ARPACK is
truly problem dependent. Since this optimum choice was not investigated, whenever free
vibration results are presented the number of eigenvalues requested and number of Arnoldi basis
vectors used are explicitly stated.

Returning to Table 3, the computed fundamental frequencies are remarkably in
agreement with the analytical solutions, for all side-to-thickness ratios considered. In fact, the
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4th-order mixed least-squares element appears to be quite sufficient to obtain very goods results
for the fundamental frequency in this case.

The next problem is the static analysis of the symmetric laminate (0/90/0/90/0) with
FFSS1 boundary conditions. Once more, p-convergence of the proposed mixed least-squares
element is inspected, using in turn 4th, 6th and 8th-order elements in a uniform mesh of 4x4
square elements. Table 4 shows the results for the transverse deflection, stress resultants and
stresses, using again side-to-thickness ratios of 10, 20 and 100. For this problem, Lévy analytical
solutions are presented for comparison.

Table 4. Static results for the laminate (0/90/0/90/0) FFSS1 using a uniform mesh 4x4.

alh  porder  W(g.4) M,(4.4) M,l64) 0,50 Fi(s4) 70(54) F0(0)
10 4 3.0600 0.0061 1.2458 4.9787 0.0179 1.8719 0.9335
6 3.0600 0.0061 1.2458 4.9785 0.0179 1.8718 0.9335
8 3.0600 0.0061 1.2458 4.9785 0.0179 1.8718 0.9335
Analytical  3.0600 0.0061 1.2458 4.9279 0.0179 1.8718 0.9240
20 4 2.7082 0.0069 1.2449 4.9770 0.0179 1.8705 0.9332
6 2.7082 0.0070 1.2449 49750  0.0179 1.8706  0.9328
8 2.7082 0.0069 1.2449 4.9748 0.0179 1.8705 0.9336
Analytical 2.7082 0.0069 1.2449 49241 0.0179 1.8705 0.9233
100 4 2.5956 0.0072 1.2446 4.9787 0.0179 1.8700 0.9335
6 2.5957 0.0073 1.2446  4.9792 0.0179 1.8701 0.9336
8 2.5955 0.0074 1.2446 4.9783 0.0179 1.8701 0.9334

Analytical 2.5957  0.0074  1.2446 49230 0.0179  1.8701  0.9231

Noticeably, the computed numerical results in Table 4 show excellent agreement with the
analytical solutions, even more than in the previous static problem. Not only the centre
transverse deflection, but also stress resultants and stresses can be predicted exactly using just
4th-order elements, for all side-to-thickness ratios considered. Basically, it seems that most of the
computed results are converged using the 4th-order elements, including the results for a thin
laminate. Again, only the transverse force resultant and transverse stress show a small
discrepancy between the analytical and numerical results. This occurrence is more or less
apparent throughout every static analysis problems here presented. So, to avoid repetition, it is
understood henceforth that the static analytical solutions for these variables may not be fully
converged in the series representation.

Fig. 3 shows the distributions for the in-plane stresses o, and o,, through the laminate
thickness, using a side-to-thickness ratio of 10. These plots contain the numerical results by the
8th-order element in a 4x4 mesh with the Lévy solution.
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Figure 3. In-plane stresses for the laminate (0/90/0/90/0) FFSS1 with a/h=10.

To conclude the static analysis of both cross-ply laminates previously considered, the
transverse deflections along the line x=a/2 of the plate are plotted in Fig. 4. Namely, the
antisymmetric laminate (0/90) SSSS1 and the symmetric laminate (0/90/0/90/0) FFSS1. Fig. 4
contains then, the corresponding analytical solutions and numerical results using the 6th-order
element in a 4x4 mesh, given side-to-thickness ratios of 10 and 100 (i.e. for thick and thin
laminates, respectively).

6th-order (0/90/0/90/0) a/h=10
6th-order (0/90/0/90/0) a/h=100
6th-order (0/90) a/h=10
6th-order (0/90) a/h=100
Analytic (0/90/0/90/0) a/h=10
—————— Analytic (0/90/0/90/0) a/h=100
—— — Analytic (0/90) a/h=10

— — — Analytic (0/90) a/h=100

o p ¢ 0O

=|

0.0 0.2 0.4 0.6 0.8 1.0
vla
Figure 4. Transverse deflections along x = a/2 for the cross-ply laminates.

Evidently, Fig. 4 demonstrates that the computed results by the proposed mixed least-

squares element for static analysis are in any case well in agreement with the analytical solutions,
whether thin or thick laminates are concerned. In fact, results so far suggest that this mixed least-
squares model is insensitive to shear locking, at least for the p-levels considered.
The last selected problem of this section devoted to cross-ply laminates is the free vibration
analysis of the former symmetric laminate (0/90/0/90/0), but with SSSS2 boundary conditions
instead. This time, the 5 lowest natural frequencies are investigated using a uniform mesh of 4x4
square elements and the 4th-order mixed least-squares element. The numerical results for these
natural frequencies are given in Table 5 for the usual side-to-thickness ratios, along with the
Navier solutions. In particular, this computation uses ARPACK to extract of a cluster of 14
eigenvalues (in complex conjugate pairs) with 57 Arnoldi basis vectors.
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Table 5. Free vibration results for the laminate (0/90/0/90/0) SSSS2 using a uniform mesh 4x4.

alh  p-order @, @, @, @, @,

10 4 12.5650 24.0078 30.0457 36.5359 40.1397
Analytical 12.5651 24.0120 30.0549 36.5559 40.1329

20 4 14.3875 29.2513 42.4381 50.1919 54.8037
Analytical 14.3875 29.2508 42.4421 50.2606 54.8754

100 4 15.1909 31.8771 51.7589 60.3319 64.9051

Analytical  15.1909 31.8770 51.7581 60.3285 64.9772

Overall, the 5 computed natural frequencies exhibit an outstanding accordance with the
analytical solutions, regardless of the side-to-thickness ratios considered. Actually, the 4th-order
element is able to predict quite well the natural frequencies higher than the fundamental
frequency, even though the results slightly worsen as the natural frequencies increase (which is
expected to some extent).

The following surface plots illustrate the modes of vibration computed for these 5 natural
frequencies, concerning only the transverse deflection.

vla 0 o x/a v/a 0 o x/a

Figure 5. Modes of vibration 1 and 2 for the laminate (0/90/0/90/0) SSSS2.

x/a

0 o yla 0 o x/a

Figure 6. Modes of vibration 3 and 4 for the laminate (0/90/0/90/0) SSSS2.

yl/a
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Figure 7. Mode of vibration 5 for the laminate (0/90/0/90/0) SSSS2.

The represented modes of vibration in Figs. 5-7 are also obtained using the 4th-order mixed
least-squares element in a 4x4 uniform mesh and specifically for a side-to-thickness ratio of 10,
although qualitatively the modes are the same for all side-to-thickness ratios. To be precise, all
these graphics are constructed from the eigenvectors solution (for transverse deflection) and
taking into account the 4th-order basis functions as well as the finite elements geometry
transformations between the master element. So, ultimately, the overall mode shape is displayed
by putting together every finite element contribution.

The modes of vibration for the transverse deflection are indeed in agreement with the
Navier solutions, as the specific pair of harmonics that correspond to each analytical natural
frequency matches the represented modes. Explicitly, the pair of harmonics along x and y
respectively, for increasing natural frequencies are (1,1), (1,2), (2,1), (2,2) and (1,3). Therefore,
the proposed mixed least-squares model for free vibration analysis based on C° high-order basis
functions, is in fact capable of good predictions for the natural frequencies as well as the modes
of vibration.

Angle-ply laminates

This section starts with the static analysis problem of the antisymmetric laminate (-45/45) with
SSSS2 boundary conditions. Similarly to the first selected problem, the effect of both p- and 4-
refinements is examined. Table 6 shows the computed results using a fixed uniform mesh of 4x4
square elements and an increasing order for the mixed least-squares element, whereas Table 7
presents the results using a fixed p-level with the 4th-order element and increasingly refined
meshes. Both tables include results of transverse deflection, stress resultants and stresses, with
side-to-thickness ratios of 10, 20 and 100. The appropriate Navier analytical solutions are
presented as well.
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Table 6. Static results for the laminate (-45/45) SSSS2 using a uniform mesh 4x4.

alh _p-order  wl(s.4) M,(5.4) M, (00) 0,(50) 7"(5.4) 7" (0:0) 50 (5.0)

10 4 1.2792 0.3718 -0.4417 3.2730 0.3476 0.4311 0.3928
6 1.2792 0.3720 -0.4388  3.2778 0.3477 0.4285 0.3933
8 1.2792 0.3720 -0.4383  3.2785 0.3478 0.4281 0.3934
Analytical 1.2792 0.3720 -0.4379  3.2276 0.3477 0.4277 0.3873

20 4 1.0907 0.3744 -0.4500 3.2468 0.3496 0.4380 0.3896
6 1.0907 0.3745 -0.4487  3.2507 0.3497 0.4370 0.3901
8 1.0907 0.3745 -0.4482 3.2514 0.3497 0.4365 0.3902
Analytical 1.0907 0.3744 -0.4477  3.2005 0.3497 0.4360 0.3841

100 4 1.0305 0.3762 -0.4547  3.2357 0.3512 0.4419 0.3883
6 1.0305 0.3755 -0.4558 3.2392 0.3505 0.4430 0.3887
8 1.0305 0.3743 -0.4556  3.2396 0.3505 0.4428 0.3887
Analytical 1.0305 0.3755 -0.4549 3.1884 0.3505 0.4422 0.3826

Table 7. Static results for the laminate (-45/45) SSSS2 using the 4th-order element.

a/h _ Mesh w(s.4) M,(5.4) M,(00) 0,(5.0) 73"(5.4) 50" (00) 7 (5.0)

10 4x4 1.2792 03718  -0.4417 3.2730  0.3476  0.4311 0.3928
5%5 1.2792  0.3721 -0.4405 3.2798  0.3478  0.4301 0.3936
8x8 1.2792 03720  -0.4391 3.2788 03477  0.4288  0.3935
Analytical 12792 03720  -0.4379 3.2276  0.3477  0.4277  0.3873

20 4x4 1.0907 03744  -0.4500 3.2468  0.3496  0.4380  0.3896
5%5 1.0907 03745  -0.4496 3.2513 03497  0.4377  0.3902
8x8 1.0907 03744  -0.4487 3.2516  0.3497  0.4370  0.3902
Analytical 1.0907 03744  -0.4477 3.2005  0.3497  0.4360  0.3841

100 4x4 1.0305 03762  -0.4547 3.2357 03512  0.4419  0.3883
5%5 1.0305 03754  -0.4548 3.2355  0.3504  0.4421 0.3883
8x8 1.0306 03755  -0.4551 3.2393  0.3506  0.4424  0.3887
Analytical 1.0305 03755  -0.4549 3.1884 0.3505  0.4422  0.3826

Again, the numerical results shown in both Tables 6 and 7 are altogether in good
agreement with the analytical solutions, for the range of side-to-thickness ratios analyzed.
Specifically, convergence of the numerical results is once more verified for both p- and A-
refinements. Actually, it is interesting to note that the number of degrees of freedom given by the
8th-order elements in a 4x4 mesh is exactly the same as the 4th-order elements in an 8x8 mesh.
A comparison between these two cases suggests that p-refinement is somewhat more efficient,
especially in view of side-to-thickness ratios of 10 and 20. However, for an exact study on this
matter see Pontaza [9]. Still, in this problem it appears that the 4th-order element is sufficient to
provide accurate predictions for the transverse deflection as well as reasonable predictions for
stresses and stress resultants, whether thin or thick laminates are considered.

The in-plane stresses o,, and oy, through the laminate thickness are plotted in Fig. 8,
given a side-to-thickness ratio of 10, and using the results obtained by the 8th-order element in a
4x4 mesh together with the Navier analytical solution.
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Figure 8. In-plane stresses for the laminate (-45/45) SSSS2 with a/h=10.

The problem of free vibration analysis of the antisymmetric laminate (-45/45) with
SSSS2 boundary is now considered. The fundamental frequency is computed by the 4th-order
mixed least-squares element in a 4x4 uniform mesh, for the same side-to-thickness ratios as
before. In this particular computation with ARPACK, it is specified the extraction of 2
eigenvalues (in a complex conjugate pair) using 50 Arnoldi basis vectors. The computed results
are presented in Table 8 as well as the Navier solutions.

Table 8. Free vibration results for the laminate (-45/45) SSSS2 using a uniform mesh 4x4.

a/h  p-order @,
10 4 10.8951
Analytical  10.8951
20 4 11.9327
Analytical 11.9329
100 4 12.3408

Analytical 12.3408

From Table 8, it is verified that the computed fundamental frequencies are almost entirely
coincident with the analytical solutions, for these side-to-thickness ratios. Hence, concurring
with the previous free vibration analysis problems, the mixed least-squares model of 4th-order is
quite capable of obtaining excellent results for the fundamental frequencies.

The very last selected problem considers the static analysis of the antisymmetric laminate
(30/-60/60/-30) with SSSS2 boundary conditions. In this case, a uniform mesh of 4x4 square
elements is used along with either the 4th, 6th or 8th-order elements. Table 9 shows these
numerical results for the transverse deflection, stress resultants and stresses, with the usual side-
to-thickness ratios. The Navier analytical solutions are likewise shown.

42



Table 9. Static results for the laminate (30/-60/60/-30) SSSS2 using a uniform mesh 4x4.

alh  porder  wlg.5) M. (5.9) M,(5.5) 0.00.5) 5L (5.5)5,"(5.4) 5L (0.5)

10 4 0.9261 0.7107 0.4410 3.7218 0.4702 0.4034 0.5423
6 0.9262 0.7125 0.4419 3.7172 0.4715 0.4041 0.5416
8 0.9262 0.7125 0.4419 3.7178 04714 0.4041 0.5417
Analytical 0.9261 0.7125 0.4418 3.6668 0.4714 0.4041 0.5343

20 4 0.7306 0.7224 0.4391 3.7279 0.4785 0.3947 0.5432
6 0.7307 0.7274 0.4413 3.7105 0.4821 0.3963 0.5407
8 0.7307 0.7273 0.4412 3.7114 0.4821 0.3962 0.5408
Analytical 0.7307 0.7273 0.4412 3.6604 0.4821 0.3962 0.5334

100 4 0.6671 0.7235 0.4364 3.7592 0.4796 0.3898 0.5478
6 0.6682 0.7326 0.4413 3.7074 0.4858 0.3937 0.5402
8 0.6681 0.7326 0.4412 3.7104 0.4858 0.3936 0.5407

Analytical  0.6681 0.7325  0.4411 3.6594  0.4858  0.3936  0.5332

Table 9 shows yet again that the computed results are overall well in agreement with the
analytical solutions. As previously stated, it is evident that even when thin laminates are
considered the proposed mixed least-squares finite element experiences no shear-locking, so far
as 4th- or higher-order elements are used. Nevertheless, in this particular problem the numerical
results for stresses and stress resultants by the 4th-order element do not show as much accuracy
as in the previous static problems, especially for a side-to-thickness ratio of 100. In fact, p-
convergence is quite apparent when the subsequent results by the 6th-order elements are
examined.

The predicted in-plane stresses oy, and oy, through the laminate thickness are plotted in

the following Fig. 9, for a side-to thickness ratio of 10. Again, the stress results are given by the
8th-order element in a 4x4 uniform mesh along with the analytical solution.
Similarly to the cross-ply laminates earlier, the static analysis of both angle-ply laminates is
concluded with the plot of the transverse deflections along the line x=a/2of the plate,
considering side-to-thickness ratios of 10 and 100. So, it is shown in the next Fig. 10 the proper
transverse deflections distributions obtained by the 6th-order element in a 4x4 uniform mesh
with the corresponding analytical solutions.
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] Analytic ] Analytic
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Figure 9. In-plane stresses for the laminate (30/-60/60/-30) SSSS2 with a/h=10.
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Figure 10. Transverse deflections along x =a/2 for the angle-ply laminates.

It is apparent in Fig. 10 that the numerical results obtained by the mixed least-squares
element follow extremely well the analytical solutions, for all the cases presented. Furthermore,
no evidence of shear-locking has been encountered in any static and free vibration analysis
problems considered to date, intended for assessment of the proposed mixed least-squares
models.

2.7 Concluding Remarks

This report presents mixed least-squares finite element models for static and free vibration
analysis of laminated composite plates as a reliable alternative to the mixed weak form models.
The theoretical and computational advantages of the least-squares variational principle combined
with mixed formulations are stated from the start and verified for the proposed models.
Explicitly, the least-squares formulation leads to an unconstrained minimization problem, which
ensures that no restrictive compatibility conditions are required among the mixed finite element
approximation spaces. In addition, the mixed least-squares discrete models, once the boundary
conditions are duly imposed, yield a symmetric and positive-definite stiffness matrix.

The proposed mixed least-squares models for static and free vibration analysis of laminated
composite plates consider the FSDT with generalized displacements and stress resultants as
independent variables, using equal-order interpolation. In fact, to ensure a correct minimization
of the least-squares functional, high-order C° basis functions and full integration are used to
develop the discrete finite element models. Specifically, the model for static analysis uses the
classical C° Lagrange basis functions and the later model for free vibration analysis uses C°
interpolant polynomials of Gauss-Lobatto-Legendre quadrature points, which are more suitable
basis functions for high-order elements.

The predictive capabilities of both mixed least-squares models are assessed by a selection of
numerical examples concerning four laminated composite plates with different boundary
conditions and a range of side-to-thickness ratios, from thick to thin laminates. Overall, the
numerical results for static and free vibration analysis show excellent agreement with the
analytical solutions for all problems examined. In the case of static analyses, results for
transverse deflection, stress resultants and stresses are carefully inspected and specially,
convergence of the computed results towards the analytical solutions is verified for both p- and
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h-refinements. In free vibration analyses, the natural frequencies are remarkably well predicted
and even the modes of vibration are correctly represented. Furthermore, both mixed least-squares
models are shown to be insensitive to shear-locking when modeling thin laminates.

2.8 Appendix for Part 2
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These integral expressions make use of the symmetry in the laminate stiffnesses, namely,

4;,=4,, B, =B, and D, =D. In addition, for any submatrice relating two given variables (a

and b) the following relations hold,K;” =K, C;”=C% and M =M}, which renders
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|
—_—

symmetry to the all finite element matrices.

51



2.9 References

[1]

(2]
[3]
[4]
[3]
[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Carrera, E., Theories and finite elements for multilayered, anisotropic, composite plates
and shells, Archives of Computational Methods in Engineering, Vol. 9(2), pp. 87-140,
2002.

Reddy, J.N. and Robbins Jr, D.H., Theories and computational models for composite
laminates, Applied Mechanics Reviews, Vol. 47(6), pp. 147-169, 1994.

Noor, A.K. and Burton, W.S., Assessment of shear deformation theories for multilayered
composite plates, Applied Mechanics Reviews, Vol. 42(1), pp. 1-13, 1989.

Washizu K., Variational Methods in Elasticity and Plasticity, Pergamon Press, New York,
1975.

Reddy, J.N., Energy Principles and Variational Methods in Applied Mechanics, Wiley,
New York, 2002.

Reddy, J.N., An Introduction to the Finite Element Method, 31 ed., McGraw-Hill, New
York, 2006.

Reddy, J.N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis,
2" ed., CRC Press, Boca Raton, 2004.

Pontaza, J.P. and Reddy, J.N., Mixed plate bending elements based on least-squares
formulation, International Journal for Numerical Methods in Engineering, vol. 60, pp.
891-922, 2004.

Pontaza, J.P., Least-squares variational principles and the finite element method: theory,
formulations, and models for solid and fluid mechanics, Finite Elements in Analysis and
Design, vol. 41, pp. 703-728, 2005.

Duan, H.-Y. and Lin, Q., Mixed finite elements of least-squares type for elasticity,
Computer Methods in Applied Mechanics and Engineering, vol. 194, pp. 1093-1112, 2005.
Reissner, E., On a certain mixed variational theory and a proposed application,
International Journal for Numerical Methods in Engineering, vol. 20, pp. 1366-1368,
1984.

Reissner, E., On a mixed variational theorem and on a shear deformable plate theory,
International Journal for Numerical Methods in Engineering, vol. 23, pp. 193-198, 1986.
Duan, H.-Y. and Liang, G.-P., Mixed and nonconforming finite element approximations of
Reissner-Mindlin plates, Computer Methods in Applied Mechanics and Engineering, vol.
192, pp. 5265-5281, 2003.

Warburton, T.C., Sherwin, S.J. and Karniadakis, G.E., Basis functions for triangular and
quadrilateral high-order elements, SIAM Journal on Scientific Computing, vol. 20(5), pp.
1671-1695, 1999.

Bai, Z., Demmel, J., Dongarra, J., Ruhe, A. and Vorst, H., Templates for the Solution of
Algebraic Eigenvalue Problems: A Practical Guide, STAM, Philadelphia, 2000.

52



REPORT DOCUMENTATION PAGE Form Approved

OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY ( Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 2008 Final Report
(March 2005-March 2008)
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A NEW COMPUTATIONAL METHODOLOGY FOR ARO Grant WOL1NF-05.1.0122
STRUCTURAL DYNAMICS PROBLEMS AMSRD-ARL -RO-OI Proposal Number:
45508-EG
6. AUTHOR(S)
J. N. Reddy
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Mechanical Engineering, REPORT NUMBER
Texas A&M University

College Station, Texas 77843-3123

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed
as an official Department of the Army position, policy or decision, unless so designated by the documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Most structural components encountered in army vehicles and armor can be classified as beams, plates, or
shells for analysis purposes. While these structural elements are designed to function properly under thermo-
mechanical loads encountered in their use, they do develop high stresses and experience high vibration
frequencies that may make them non-functional in actual service conditions. The objective of this research is
to develop consistent plate and shell theories and associated computational framework for linear and non-
linear problems of structural dynamics in which localized high gradients of the solutions are resolved
accurately. Crucial importance of this framework will be demonstrated computationally through well known
benchmark model problems in the area of solid mechanics with special focus on composite plate and shell
structures. The developed methodology and has applications to solid and structural mechanics problems and
it will provide highly reliable, robust and accurate computational technology to the United States Army
Laboratories. The specific objectives of this research were to (1) develop accurate and consistent structural
theories and associated finite element models of plates and shells that account for transverse shear
deformation and illustrate the accuracy using benchmark plate and shell problems; (2) develop mixed and
least-squares finite element models of the refined theories for the analysis of plates and shells; and (3)
incorporate geometric nonlinearity into the mixed and least-squares finite element models and study
problems of plates and shells.

14. SUBJECT TERMS 15. NUMBER OF PAGES
laminated composite plates and shells, least-squares finite element models, 56 including cover page
layerwise theory, third-order shear deformation theory, bending, buckling and
vibration response

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL




NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)
Prescribed by ANS| Std. 239-18

REPORT DOCUMENTATION PAGE (SF298)
(Continuation Sheet)

298-102

1. LIST OF JOURNAL PAPERS PUBLISHED

* JN. Reddy and R. A. Arciniega, “Mechanical and Thermal Buckling of Ceramic-Metal Plates,”
Chapter 6 in Analysis and Design of Plated Structures, Statics, N. E. Shanmugam and C. M. Wang
(eds), Wood-Head Publishing, Oxford, UK, pp. 138-160, 2005.

* R. A. Arciniega and ]. N. Reddy, “A Consistent Third-Order Shell Theory with Application to
Bending of Laminated Composite Cylindrical Shells,” AIAA Journal, Vol. 43, No. 9, pp. 2024-2038,
2005.

e V. Prabhakar and J. N. Reddy, “Spectral/hp Penalty Least-Squares Finite Element Formulation for
the Steady Incompressible Navier-Stokes Equations,” Journal of Computational Physics, Vol. 215, No.
1, pp. 274-297, 2006.

* JN. Reddy and R. A. Arciniega, “Vibration of Functionally Graded Ceramic-Metal Plates,” in
Analysis and Design of Plated Structures: Dynamics, N. E. Shanmugam and C. M. Wang (eds), Wood-
Head Publishing, Oxford, UK, pp. 293-321, 2007.

* R. A. Arciniega and J. N. Reddy, “Tensor-based Finite Element Formulation for Geometrically
Nonlinear Analysis of Shell Structures,” Computer Methods in Applied Mechanics and Engineering, Vol.
196, Nos. 4-6, pp. 1048-1073, 2007.

* R. A. Arciniega and J. N. Reddy, “Large deformation analysis of functionally graded shells,”
International Journal of Solids and Structures, Vol. 44, pp. 2036-2052, 2007.

* V. Prabhakar and J. N. Reddy, "A Stress-based Least-Squares Finite-element model for
Incompressible Navier-Stokes Equations," International Journal for Numerical Methods in Fluids, vol.
54, issue 11, pp. 1369-1385, 2007.

* F. Moleir, C.M. Mota Soares, C.A. Mota Soares, and ]J.N. Reddy, “Mixed least-squares finite element
model for the static analysis of laminated composite plates,” Computers and Structures, Vol. 86 pp.
826-838, 2008.

* Henrique Santos, C. M. Mota Soares, C. A. Mota Soares, and ]J.N. Reddy, “A finite element model
for the analysis of 3D axisymmetric laminated shells with piezoelectric sensors and actuators:
Bending and free vibrations,” Computers and Structures, Vol. 86 pp. 940-947, 2008.

2. SCIENTIFIC PERSONNEL and HONORS AND AWARDS

¢ J.N.Reddy, Roman Arciniega, V. Prabhakar, Filipa Moleiro, Yetzirah Urthaler

e Editor-in-Chief, Applied Mechanics Reviews, American Society of Mechanical Engineers, New
York, October 2007.

e Fellow of the American Institute of Aeronautics and Astronautics, May 2005.

e Distinguished Achievement in Teaching Award, Association of Former Students (AFS), Texas
A&M University, 2007 (university level).

e Distinguished Lecture of the Sigma Xi, Texas A&M University, October 2005.

e Distinguished Research Award of the Sigma Xi, Texas A&M University, March 2005.



Presented the following key note lectures:

» “Computational Modeling of Materials and Structures and New Computational
Methodology,” The US-Africa Workshop on Mechanics and Materials, University of Cape
Town, South Africa, January 23-28, 2005.

» “A Finite Deformation Shell Formulation for the Analysis of Composite and
Functionally Graded Material Structures,” Symposium on Physics and Mechanics of
Advanced Materials, January 18-20, 2006, Singapore.

» “On Nonlinear Analysis of Composite and Functionally Graded Shell Structures,”
Tenth East Asia Pacific Conference on Structural Engineering and Construction, August 2-4,
2006, Bangkok, Thailand.

» “Nonlinear Analysis of Composite and FGM Shell Structures Using Tensor-Based
Shell Elements,” International Workshop in Mechanics of Composites, Bad Herrenab,
Germany, November 26-29, 2006.

3. INVENTIONS None

4. SCIENTIFIC PROGRESS AND ACCOMPLISHMENTS

A tensor-oriented finite element formulation is developed by using curvilinear coordinates. High-order
elements with Lagrangian interpolations are used to avoid membrane and shear locking. The formulation
is based on the first-order shell theory with seven parameters with exact nonlinear deformations and
under the framework of the Lagrangian description. Numerical results of the present formulation for
typical benchmark with applications to laminated composite shells and functionally graded shells were
carried out. Least-squares based finite element models of viscous incompressible flows are also developed
with the interest to formulate computational procedures for fluid-structure interaction problems. Finally,
mixed finite element models of laminated composite plates were also developed that allow accurate
computation of stress resultants. In summary, the folowing accomplishments are reported:

1.

The theoretical as well as finite element formulation of unified, consistent, nonlinear shell theory
that accounts for large displacements, large rotations and moderately large strains was
developed. The computational model is used to analyze (a) laminated composite shells and (b)
two-phase functionally graded shells. The applicability of the finite element model to a variety of
geometrically complex shells is demonstrated with a a number of benchmark problems of
isotropic, laminated composite (cross-ply, angle-ply, and general laminated) shells.

Least-squares finite element models of viscous incompressible fluids are developed. The models
are characterized by positive-definite system of equations that can be solved using iterative
methods.

Mixed finite element models of laminated plates in which the generalized displacements and
stress resultants are approximated independently are developed.

5. TECHNOLOGY TRANSFER

The PI is in continuous contact with Mr. Rostam-Abadi of TACOM and Drs. A.M. Rajendran and

Bruce LaMattina of ARO concerning the results of this research. He has visited both TACOM in
Warren and ARO in Research Triangle Park to present the scientific progress made.




